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Abstract

We give a geometric integration of the extended Lee homomorphism, yielding a homomorphism
on the group of automorphisms of a locally conformal symplectic manifold and interpret its ker-
nel as quotient of a group of symplectic diffeomorphisms of a canonically associated symplectic
manifold, on which we construct the Calabi invariants in terms of the cA-cohomology. The value
of this global Lee homomorphism on an automorphism is the similitude ratio of some lifting on
the associated symplectic manifold. Applications to mechanics are given. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction and statement of the results

A locally conformal symplectic (LCS) pair on a smooth manifoldM of dimension 2n ≥ 4
is a couple (Ω,ω), where Ω is a non-degenerate 2-form, and ω a closed 1-form such that
dΩ = −ω∧Ω [13,14]. The form ω is called the Lee form; it is uniquely determined by Ω
(see Lemma 2 in Section 2.2).

If ω = 0 in the definition above, Ω is a symplectic form. The class of symplectic
manifolds (which are the natural setting of classical mechanics) is much smaller than the
class of manifolds carrying LCS structures, as examples in Section 2.1 show. However, in
Section 5, we show that we can use these “weaker” structures to do mechanics.
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If λ is a positive smooth function, then

d(λΩ) = −(ω − d(ln λ)) ∧ (λΩ), i.e. (λΩ, (ω − d(ln λ))) (1)

is again an LCS pair.
Two LCS pairs (Ω,ω) and (Ω ′, ω′) are said to be conformally equivalent, and we note

(Ω,ω) ≈ (Ω ′, ω′), iff there exists a smooth positive function λ such that Ω ′ = λΩ , and
ω′ = ω − d(ln λ).

An equivalence class S = [Ω,ω] of LCS pairs is called an LCS structure on M and the
couple (M,S) an LCS manifold. If an LCS pair (Ω,ω) is equivalent to an LCS pair (Ω, 0),
we say that the LCS structureS = [Ω,ω] is a (global) conformal symplectic structure. These
structures were introduced by Lee [13], and have been studied extensively by Vaisman [14].

Throughout this paper, we will assume that all manifolds considered are connected. Our
first result is the following simple, but crucial remark.

Theorem 1. Let (M,S) be an LCS manifold, and let an LCS pair (Ω,ω) ∈ S. Letπ : M̃ →
M be the minimum regular covering of M associated with the 1-form ω. Let λ : M̃ → R

be a positive function on M̃ such that

π∗ω = d(ln λ). (2)

Then Ω̃ = λ(π∗Ω) is a symplectic form on M̃ and its conformal class S̃ = [Ω̃, 0] depends
only on S, i.e. is independent of the choice of (Ω,ω) ∈ S and of λ.

It is well known that the group A of automorphisms of the covering M̃ is equal to the
group of periods of ω [8].

Lemma 1. Let λ be as above, for any τ ∈ A, (λ ◦ τ)/λ = cτ is a constant number,
independent of the choice of λ and τ �→ cτ is a group homomorphism c from A to the
multiplicative group R+ of positive real numbers.

Let DiffS(M) be the group of automorphisms of an LCS structure S on a smooth man-
ifold M . It is clear that for any LCS pair (Ω,ω) ∈ S, then DiffS(M) is the set of all
diffeomorphisms φ of M such that φ∗Ω = fφΩ , where fφ is a smooth function on M . We
will denote by DiffS(M)0 the subgroup formed by those φ ∈ DiffS(M), which are isotopic
to the identity through DiffS(M).

The Lie algebra XS(M) of infinitesimal automorphisms of S, consists of vector fields X
on M such that LXΩ = δXΩ , where δX is a smooth function on M . Here LX stands for
the Lie derivative in the direction X.

A short calculation shows that for such vector field X:

d(ω(X)) = LXω = −dδX.

Hence, ω(X) + δX is a constant l(X), and the correspondence X �→ l(X) is a Lie algebra
homomorphism called the extended Lee homomorphism [14]. For the convenience of the
reader, a proof of these facts is given in Section 2.2.

Our main result is the following theorem.
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Theorem 2. Let (M,S) be a connected LCS manifold, an LCS pair (Ω,ω) ∈ S, π : M̃ →
M the covering associated with ω, a function λ : M̃ → R such that π∗ω = d(ln λ).

For each φ ∈ DiffS(M)0, let φ̃ : M̃ → M̃ be a diffeomorphism covering φ, i.e. such
that π ◦ φ̃ = φ ◦ π , then

λ ◦ φ̃
λ

· (fφ ◦ π) (3)

is a non-zero constant bφ̃ , independent of the choice of λ. If φ̂ is another lifting of φ, then
b
φ̂

= σ · bφ̃ , where σ ∈ ∆ = c(A).
The correspondence φ �→ bφ̃ is a well-defined group homomorphism:

L : DiffS(M)0 → R
+/∆,

which does not depend on the choice of (Ω,ω) ∈ S, i.e. is a conformal invariant.
The number bφ̃ is the similitude ratio of φ̃, i.e. φ̃∗Ω̃ = bφ̃Ω̃ . Hence the Kernel G of L is

a normal subgroup which can be identified with a quotient of a connected subgroup of the
group of symplectic diffeomorphisms of (M̃, Ω̃).

Let φt be the local 1-parameter group of diffeomorphisms generated by an infinitesimal
automorphism X ∈ XS(M), then

d

dt
(ln(bφ̃t ))|t=0 = l(X). (4)

As a consequence if l is surjective, thenL is non-trivial. This in turn implies that Ω̃ is exact.

2. Complements and examples

We say that Eq. (4) gives an integration of l by the mapping φ̃ �→ ln(bφ̃). Let φ ∈
DiffS(M) and fφ the smooth function such that φ∗Ω = fφΩ for some (Ω,ω) ∈ S. Then
φ∗ dΩ = −φ∗ω ∧ φ∗Ω = −φ∗ω ∧ fφΩ = dφ∗Ω = d(fφΩ) = dfφ ∧ Ω − fφω ∧ Ω .
Hence (φ∗ω − ω) ∧Ω = −(dfφ/fφ) ∧Ω , which, by Lemma 2, gives

(φ∗ω − ω) = −d(ln fφ). (5)

If u(x) is any smooth function such that (φ∗ω − ω) = du, then (5) implies that

K = u+ ln fφ (6)

is a constant depending on φ and the choice of the primitive u. There are several ways to
choose such a primitive. A first way is to use an isotopy φt from the identity to φ:

u(φt ) =
∫ 1

0
φ∗
t (i(φ

·
t )ω) dt,

where φ·
t is the family of vector fields along the isotopy φt . Then

K(φt ) = u(φt )+ ln(fφ)
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is a constant, depending only on the isotopy class relatively to fixed ends [φ], of the isotopy
φt . The correspondence [φ] �→ K(φt ) is the homomorphism Φ̃ from the universal covering
of DiffS(M)0 to R constructed in [10]. We will show that

K(φt ) = ln(bφ̃), (7)

where φ̃ = φ̃1, and φ̃t is the lift of the isotopy φt with φ̃0 = id. Hence,

(Φ̃([φ])− ln(bφ̃)) ∈ ∆.

This means that ln ◦ L coincides with Φ of [10].
The first advantage of our construction is that we make no assumption on supports:

our homomorphism is defined even for non-compact manifolds. More importantly, that it
is a globalization of the observation by Vaisman [14] that l(X) is the constant such that
LXΩU = l(X)ΩU , where ΩU is a symplectic form equal to the restriction of Ω to a
contractible open subset U of M multiplied by a positive function λ, with ω|U = d ln(λ)
(Section 3).

Finally, the kernel G of L is isomorphic to G̃/A, where G̃ is the subgroup of the group
of symplectic diffeomorphisms DiffΩ̃ (M̃)0 of (M̃, Ω̃), generated by lifts φ̃ of elements of
DiffS(M)0 such that bφ̃ = 1.

We may now apply to G̃ the techniques, and machineries of [1,3]. For instance, the Calabi
invariant [3,6] on G̃ is just the restriction of the Calabi invariant on DiffΩ̃ (M̃)0. Explicit
formulas are given in Sections 3 and 4. This explains the results of [10] saying that the main
results of [1,3] in symplectic geometry hold in the LCS case.

For instance, fragmentation lemmas for elements in the kernel of the Calabi homomor-
phisms are easily proved (Lemma 3). From there, one can go on to study the situation locally,
which is the usual symplectic case, thanks to Vaisman remark and its extension herein.

2.1. Examples

Let (N, α) be a contact manifold. The contact form α is a 1-form such that α ∧ (dα)n is
everywhere non-zero. Here the dimension of M is 2n+ 1. Consider the Cartesian product
M = N × S1, and the projections p1 : M → N,p2 : M → S1. Let β be the canonical
1-form on S1 with integral 1. If we set θ = p∗

1α and ω = p∗
2β, then Ω = dθ + ω ∧ θ is

non-degenerate and dΩ = −ω∧dθ = −ω∧(Ω−ω∧θ) = −ω∧Ω+ω∧ω∧θ = −ω∧Ω .
Hence, (Ω,ω) is an LCS pair on M . Here the manifold M̃ = N × R, and (M̃, Ω̃) is the
symplectification of the contact manifold (N, α).

The above example leads to generalized symplectifications of contact manifolds. Let
(N, α) be a contact manifold and consider a smooth increasing function f (t) on the real
line. On M = N × R, consider the 2-form:

Ωf = dθ + d(f ◦ p2) ∧ θ, (8)

where p1, p2 are the projections on the factors N and R, and θ = p∗
1α.
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It is clear that Ωf is non-degenerate, and a short calculation gives

dΩf = −d(f ◦ p2) ∧Ωf .

Hence (Ωf , d(f ◦p2)) is an LCS structure which is conformally equivalent to the symplectic
structure:

Ω̃f = e(f ◦p2)(dθ + d(f ◦ p2) ∧ θ) = d(e(f ◦p2)θ). (9)

Thus, we have constructed a new class of symplectic structures on N × R. In particular,
when f (t) = t , we get the usual symplectification.

Stein manifolds carry complete Liouville fields [7]. Thus if M̃ is a Stein manifold with
a complex structure J compatible with the symplectic form Ω̃ , Liouville vector fields can
be obtained from J -convex functions [7] (see also [4]). If we can find such a J -convex
function, which is invariant by the deck transformations A, and whose Liouville field is
complete, then L is non-trivial.

2.2. Some classical facts

Several formulas in this work are deducted using the following well-known fact. A proof
is given for convenience of the reader.

Lemma 2. If Ω is a non-degenerate 2-form on a smooth manifold M of dimension 2n ≥ 4,
and α is a 1-form, then α ∧Ω = 0 implies that α is identically zero.

Proof. Suppose there is a point x ∈ M so that αx �= 0. Complete αx into a basis of the
cotangent space T ∗

x (M): (αx, θ2, . . . , θm), m = 2n and write Ωx as

Ωx =
m∑
j=2

ujαx ∧ θj +
∑
i
<�=j
vijθi ∧ θj .

We have

0 = αx ∧Ωx =
∑
i
<�=j
vijαx ∧ θi ∧ θj .

Since αx ∧ θi ∧ θj are linearly independent, vij = 0 for all i and j . Hence, Ωx = αx ∧ β

with β = ∑m
j=2uj θj . Consequently, Ω2

x = 0 contradicting the fact that Ωn
x �= 0, and

n ≥ 2. �

2.3. Consequences of Lemma 2

2.3.1. Uniqueness of the Lee form
If dΩ = −ω ∧Ω = −ω′ ∧Ω , then (ω − ω′) ∧Ω = 0. Hence ω′ = ω.

2.3.2. The extended Lee homomorphism
ForX ∈ XS(M), we haveLXΩ = δXΩ . Hence dLXΩ = dδX∧Ω−δX(ω∧Ω), which

is equal to LX dΩ = LX(−ω ∧Ω) = −LXω ∧Ω −ω ∧ (δXΩ). Since LXω = d(ω(X)),



A. Banyaga / Journal of Geometry and Physics 39 (2001) 30–44 35

we have d(ω(X)+ δX)∧Ω = 0. By Lemma 2, d(ω(X)+ δX) = 0. Hence, ω(X)+ δX is
a constant l(X).

It is obvious that the map l is a vector space homomorphism. To show it is a Lie algebra
homomorphism, we only need to show that it vanishes on brackets of vector fields inXS(M).
For X, Y ∈ XS(M), we have

L[X,Y ]Ω = δ[X,Y ]Ω = LXLYΩ − LYLXΩ = (X · δY − Y · δX)Ω.

Hence, δ[X,Y ] = (X · δY − Y · δX). On the other hand, since ω is a closed 1-form:

ω([X, Y ]) = LXi(Y )ω − i(Y )LXω = X · ω(Y )− Y · ω(X).

Moreover, for any pair of vector fields U,V, V ∈ XS(M), we have

U · δV = −U · ω(V ),

since δV = −ω(V )+ l(V ) and l(V ) is constant. Therefore,

l([X, Y ]) = δ[X,Y ] + ω([X, Y ]) = (X · δY − Y · δX)+ (X · ω(Y )− Y · ω(X)) = 0.

2.3.3. A classical result of P. Libermann [12]

Theorem 3. Let (M,Ω) be a connected symplectic manifold of dimension greater than or
equal to 4. If φ is a diffeomorphism of M such that φ∗Ω = fΩ for some smooth function
f, then f is a constant.

Proof. 0 = φ∗(dΩ) = d(φ∗Ω) = df ∧Ω . By Lemma 2, df = 0. �

Therefore, if S is a global conformal symplectic structure on a smooth manifold M ,
represented by a symplectic form Ω , then DiffS(M) consists of those diffeomorphisms h
such that h∗Ω = kΩ , for some constant k, provided that the dimension of M is greater
than or equal to 4.

3. The associated conformal symplectic structure

Let (Ω,ω) be an LCS pair on a smooth manifoldM and letU = (Ui) be an open cover by
contractible open sets such that Ui ∩ Uj is connected. Let ωi and Ωi denote, respectively,
the restrictions of ω and Ω to the open set Ui . By Poincare lemma, there exist smooth
positive functions λi on Ui such that ωi = d(ln λi). Then Ω ′

i = λiΩi is non-degenerate
and closed, i.e. it is a symplectic form on Ui . Indeed

d(λiΩi) = dλi ∧Ωi + λi(−ω ∧Ω) = dλi − λi d(ln λi) ∧Ωi = 0. (10)

On Ui ∩ Uj , we have Ω ′
i = cijΩ

′
j with cij = λi/λj , and 0 = d(ln λi) − d(ln λj ) =

d(ln(λi/λj )). Since Ui ∩ Uj is connected, ln(λi/λj ) and hence cij = λi/λj is a constant.
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We thus see that an LCS structure is a Γ -structure on M , where Γ is the pseudogroup
of local diffeomorphisms of R2n preserving the standard symplectic form of R2n up to a
constant number.

We have the following Darboux-type theorem.

Theorem 4. Each point in smooth manifold equipped with an LCS pair has an open neigh-
borhood U and local coordinates (x1, . . . , xn, y1, . . . , yn), with y1 �= 0, such that

Ω|U = y1

(
n∑
i=1

dxi ∧ dyi

)
,

and ω|U = dy1/y1.

Vaisman observation [14]. Let X ∈ XS(M) and δ(X) be the function such that LXΩ =
δ(X)Ω . On each Ui , we have

LXΩ
′
i = l(X)Ω ′

i .

Theorem 1 simply expresses that the local conformal symplectic structures on Ui’s fit
together when lifted to an appropriate cover, and Theorem 2 says that l globalizes into a
homomorphism whose value on an global automorphism is the similitude ratio of some
lifting to the symplectic manifold in Theorem 1.

Proof of Theorem 1. Since π is a local diffeomorphism, π∗Ω is non-degenerate, and so
is Ω̃ = λπ∗Ω since λ is a nowhere zero function. The same calculation as in (10) shows
that d(λΩ̃) = 0. Hence, Ω̃ is a symplectic form on M̃ .

If λ′ is so that d(ln λ′) = d(ln λ) = π∗ω, then λ′ = c · λ for some constant c. Hence,
Ω̃ ′ = λ′π∗Ω ′ = c · Ω̃ . The conformal class S̃ of [Ω̃, 0] is thus independent of the choice
of λ.

Let (Ω ′, ω′) ∈ S be another representative of S. We know that Ω ′ = µΩ and ω′ =
ω − d(lnµ) for some positive function µ.

The covering associated with ω′ is the same as the one associated with ω, since both
coverings have the group of periods of ω as deck transformations [8]. We have π∗ω′ =
d(ln(λ/(µ ◦ π))). Hence,

Ω̃ ′ =
(

λ

µ ◦ π
)
π∗Ω ′ =

(
λ

µ ◦ π
)
(µ ◦ π)π∗Ω = Ω̃.

Hence the global conformal symplectic structure S̃ on M̃ is uniquely determined
by S. �

Proof of Lemma 1. Clearly if λ′ = aλ for some constant a, then (λ′ ◦ τ)/λ′ = (λ ◦ τ)/λ.
For any τ ∈ A, we have

d(ln(λ ◦ τ)− ln λ) = τ ∗π∗ω − π∗ω = (πτ)∗ω − π∗ω = π∗ω − π∗ω = 0.

Hence ln((λ ◦ τ)/λ) = K a constant and then (λ ◦ τ)/λ = eK = cτ .
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If τ, τ ′ ∈ A, then

cττ ′ = λ ◦ ττ ′

λ
=
(
λ ◦ (ττ ′)
λ ◦ τ ′

)
· λ ◦ τ ′

λ

=
((

λ ◦ τ
λ

)
◦ τ ′

)
·
(
λ ◦ τ ′

λ

)
=
(
λ ◦ τ
λ

)
·
(
λ ◦ τ ′

λ

)
= cτ · cτ ′ . �

Vaisman observation extends into the following proposition.

Proposition 1. Let X ∈ XS(M) and X̃ a lift of X to the cover M̃ , then

L
X̃
Ω̃ = l(X)Ω̃.

Proof.

L
X̃
Ω̃ = ((X̃) · λ)π∗Ω + λL

X̃
π∗Ω =

(
dλ

λ

)
(X̃)Ω̃ + λπ∗LXΩ

= (d ln(X̃)+ δ(X) ◦ π)Ω̃ = (π∗(ω(X)+ δ(X)))Ω̃ = l(X)Ω̃. �

3.1. The cA-cohomology and the dω-cohomology

The set F∗
cA(M) of all differential forms α on M̃ such that τ ∗α = cτα for all τ ∈ A is

a subcomplex of the de Rham complex of M̃ . We denote its cohomology by H ∗
cA(M) and

call it the conformally A-invariant cohomology of M̃ . Clearly, if the cohomology class of
ω is trivial, then H ∗

cA(M) coincides with the de Rham cohomology of M .
Let us note the following feature of the conformally A-invariant cohomology.

Proposition 2. Suppose ∆ �= {1}, then H 0
cA(M) = 0 and for any closed 1-form α rep-

resenting zero in H 1
cA(M), there is a unique function u such that α = du and u ◦ τ =

cτ u∀τ ∈ A.

Proof. An element ofH 0
cA(M) is represented by a constantK such thatK ◦τ = K = cτK

for all τ ∈ A. Hence, if ∆ �= {1}, K = 0.
Also if α = du = du′, with u ◦ τ = cτ u, and u′ ◦ τ = cτ u

′, then u′ − u is a constant K
such that K = K ◦ τ = cτK . As above, K = 0. �

Proposition 3. Let Kerl denote the kernel of l which is a Lie algebra of vector fields X such
that L

X̃
Ω̃ = 0 (i.e. symplectic vector fields), the mapping

sλ : Kerl → H 1
cA(M),

which assigns to X the cohomology class [λπ∗(i(X)Ω)], is a surjective Lie algebra homo-
morphism.

This is the equivalent of the Calabi homomorphism [1,3,6].
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Proof. By definition α = i(X̃)Ω̃ = λπ∗(i(X)Ω) is a closed form. Moreover, we have

τ ∗α = (λ ◦ τ) · τ ∗π∗(i(X)Ω) = (λ ◦ τ) · π∗(i(X)Ω) =
(
λ ◦ τ
λ

)
α = cτα.

Hence sλ maps Kerl into H 1
cA(M). The mapping is a Lie algebra homomorphism since

for any X, Y ∈ KerL and lifts X̃, Ỹ , then i([X̃, Ỹ ])Ω̃ = du where u = Ω̃(X̃, Ỹ ) =
λΩ(X, Y ) ◦ π . This implies that u ◦ τ = cτ u∀τ ∈ A. Hence, sλ([X, Y ]) = 0.

Let β be a closed 1-form representing an element of H 1
cA(M), and let X̃ be a vector field

on M̃ such that i(X̃)π∗Ω = β/λ. Then for any τ ∈ A, we have

τ ∗(i(X̃)π∗Ω) = i((τ )−1
∗ X̃)τ ∗π∗Ω = i((τ )−1

∗ X̃)π∗Ω = τ ∗β
λ

◦ τ

=
(
cτ · β
λ

)
·
(

λ

λ ◦ τ
)

= β

λ
= i(X̃)π∗Ω.

Hence, i((τ )−1∗ X̃)π∗Ω = i(X̃)π∗Ω , which implies that (τ )−1∗ X̃ = X̃. Therefore, X̃ is the
lift of a vector field X on M , and sλ(X) = β. �

Remark. If X ∈ Ker sλ and u is the unique function such that λπ∗(i(X)Ω) = du, u ◦ τ =
cτ u, then v = u/λ is a basic function. If M is compact, we may integrate this function with
the measure Ωn (2n being the dimension of M), and get a number

ρ(X) =
∫
M

vΩn,

which obviously depends linearly on X. Is it a Lie algebra homomorphism? Clearly, if
X, Y ∈ Ker l, then

ρ([X, Y ]) =
∫
M

Ω(X, Y )Ωn.

Lemma 3 (Fragmentation). Given X ∈ Ker sλ and an open cover U = (Ui) of M, then
X = ∑

Xj where Xi ∈ XS(M) has support in Ui .

Proof. A vector field X is in the kernel of sλ iff λ(π∗i(X)Ω) = du, with u ◦ τ = cτ u

for all τ ∈ A. Let (µj ) be a partition of unity subordinate to U , define a vector fields Yj
on M̃ by i(Yj )π∗Ω = d((µj ◦ π)u)/λ. The same arguments as above show that Yj is
basic, i.e. there exists Xj on M with π∗Yj = Xj . Then X = ∑

jXj , supp(Xj ) ⊂ Uj and
Xj ∈ XS(M). �

Remarks.

1. The homomorphism sλ below depends on λ: if λ′ is another function with π∗ω =
d(ln ln λ′), then λ′ = kλ, k ∈ R. Hence sλ′ = ksλ. Hence sλ gives a well-defined
homomorphism intoH 1

cA(M)/R. However, the kernel of sλ is independent of the choice
of λ.
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2. This homomorphism and other Calabi homomorphisms [1,3,6] were written by Haller–
Rybicki [10] using the dω-cohomology Hω(M) of a manifold M , equipped with an
LCS (Ω,ω), introduced by Lichnerowicz. This is the cohomology of the complex of
differential forms on M with the differential

dω(α) = dα + ω ∧ α. (11)

This cohomology is not an invariant of the LCS structure S = [Ω,ω], although, given
(Ω ′, ω′) ∈ S, there is an isomorphism between Hω(M) and Hω′

(M), depending on
the choice of λ such that ω′ = ω − d ln λ. More precisely, the isomorphism is given by
α �→ λα. The link between these two cohomologies is given by the following lemma.

Lemma 4. For any differential form, α, dωα = 0 if and only if d(λπ∗α) = 0.

Proof. Suppose dωα = 0. Then d(λπ∗α) = dλ ∧ π∗α + λπ∗(−ω ∧ α) = dλ ∧ π∗α −
λ d(ln λ) ∧ π∗α = 0.

Suppose now d(λπ∗α) = 0, and compute

λπ∗(dωα) = λπ∗ dα + λπ∗ω ∧ π∗α = λπ∗ dα + λ d(ln λ) ∧ π∗α = d(λπ∗α) = 0.

Since λ is a positive function and π is a local diffeomorphism, dωα = 0. �

Proposition 4. H ∗
cA(M) is a quotient of Hω(M).

Proof. The natural homomorphism

Hω(M) → H ∗
cA(M),

[α] �→ [λπ∗α] which admits a section: let β be a form such that dβ = 0 and τ ∗β = cτβ

for all τ ∈ A. Then

τ ∗
(
β

λ

)
= τ ∗β

λ ◦ τ =
(
cτ · β
λ

)
·
(

λ

λ ◦ τ
)

= β

λ

for all τ ∈ A. Hence β/λ is basic, i.e. there is a form α on M such that β/λ = π∗α. Since
β = λπ∗α is closed, α is dω closed, by Lemma 4. �

Remark. The manifold M̃ is never compact, unless M is compact and ω is exact, in which
case M̃ = M . For instance, we note this stronger result.

Suppose the LCS pair (Ω,ω) on M is such that Ω = dθ + ω ∧ θ for some 1-form θ ,
then Ω̃ is exact. Indeed, denoting θ̂ = π∗θ, Ω̂ = π∗Ω, ω̂ = π∗ω, we have

Ω̃ = λΩ̂ = λ dθ̂ + λω̂ ∧ θ̂ = λ dθ̂ + λ d ln λ ∧ θ̂ = λ dθ̂ + dλ ∧ θ̂ = d(λθ̂).

This implies that M̃ is not compact. Indeed, no compact manifold can carry an exact sym-
plectic form, since the cohomology class of its maximum power is non-zero by Stokes
theorem.
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4. Proof of Theorem 2

Since π is a covering map, any isotopy φt : M → M lifts to an isotopy φ̃t : M̃ → M̃ .
Hence, φ ∈ DiffS(M)0 lifts to a diffeomorphism φ̃ of M̃ . This diffeomorphism belongs
to the group Diff S̃(M̃)0 of automorphisms of the global conformal symplectic structure S̃.
Indeed

φ̃∗Ω̃ = φ̃∗(λπ∗Ω) = (λ ◦ φ̃) · (π ◦ φ̃)∗Ω = (λ ◦ φ̃) · (φ ◦ π)∗Ω
= (λ ◦ φ̃) · π∗(φ∗Ω) = (λ ◦ φ̃) · π∗(fφΩ)

= (λ ◦ φ̃) · (fφ ◦ π)
(

1

λ

)
(λπ∗(Ω)) =

(
λ ◦ φ̃
λ

)
· (fφ ◦ π)Ω̃.

Here fφ is the function such that φ∗Ω = fφΩ .
Since Ω̃ is a symplectic form, and φ̃∗Ω̃ = ((λ ◦ φ̃)/λ) · (fφ ◦ π)Ω̃ ,(

λ ◦ φ̃
λ

)
· fφ ◦ π

is a constant non-zero number, we denote bφ̃ , by the classical Theorem 3 (the dimension of
the manifold is ≥ 4).

Changing λ into λ′ = kλ, k a constant, does not change bφ̃ .

If φ̂ is another lifting of φ, then

bφ̃

b
φ̂

= λ ◦ φ̃
λ ◦ φ̂ =

(
λ ◦ (φ̃φ̂−1)

λ

)
◦ φ̂.

But τ = φ̃φ̂−1 is an automorphism of the covering. Hence, (λ ◦ τ)/λ = cτ is a constant by
Lemma 1. Therefore, bφ̃ = cτ · b

φ̂
.

The correspondence φ �→ bφ̃ is a well-defined map

L : DiffS(M)0 → R
+/∆.

Let φ,ψ ∈ DiffS(M)0 and φ̃, ψ̃ their (arbitrary) liftings, then φ̃ψ̃ is a lifting of φψ . We
have

L(φψ) =
(
λ ◦ φ̃ψ̃

λ

)
· (fφψ ◦ π) =

(
λ ◦ φ̃ ◦ ψ̃

λ

)
·
(
λ ◦ ψ̃
λ ◦ ψ̃

)
(fφ ◦ ψ · fψ) ◦ π

=
(
λ ◦ φ̃ψ̃
λ ◦ ψ̃

)
· (fφ ◦ ψ ◦ π) ·

(
λ ◦ ψ̃
λ

)
· (fψ ◦ π)

=
(
λ ◦ φ̃ψ̃
λ ◦ ψ̃

)
· (fφ ◦ π ◦ ψ̃) ·

(
λ ◦ ψ̃
λ

)
· (fψ ◦ π)

=
([

λ ◦ φ̃
λ

· (fφ ◦ π)
]

◦ ψ̃
)

·
(
λ ◦ ψ̃
λ

)
· (fψ ◦ π) = L(φ) · L(ψ).

This shows that our map L is a group homomorphism.
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Let us now prove that it is a conformal invariant: if (Ω ′, ω′) ∈ S is another representative
of S, we have Ω ′ = µΩ, ω′ = ω − d(lnµ), π∗ω = d(ln λ), π∗ω′ = d(ln λ′) with λ′ =
λ/(µ ◦ π). If φ ∈ DiffS(M)0 and φ∗Ω = fφ , φ∗Ω ′ = f ′

φΩ
′, then f ′

φ = ((µ ◦ φ)/µ) · fφ .
An immediate calculation of L(φ) using λ′ and f ′

φ yield the same thing as using λ and fφ .

By the very definition of L, its kernel G is made of elements φ possessing a lift φ̃ such
that φ̃∗Ω̃ = Ω̃ , i.e. symplectic diffeomorphisms of (M̃, Ω̃). With notations of Section 2,
G = G̃/A.

The last assertion follows from in the construction of L: each lift φ̃ is isotopic to the
identity: the lift of the isotopy φt ∈ DiffS(M)0. A result of Iglesias [11] then asserts that if
Ω̃ is not exact, then the similitude ratio of φ̃ is the same as the one for the identity, i.e. 1.
In other words, if L is not trivial, then Ω̃ is exact. But Eq. (4) implies that if l is non-trivial,
so is L.

Finally, let us prove Eq. (4) clarifying the relation of L and the infinitesimal extended
Lee homomorphism l.

Let φt be the local 1-parameter group generated by a vector field X ∈ XS(M). Let
δ(X), uφt be the functions such that LXΩ = δ(X)Ω , and φ∗

t Ω = utΩ , then

d

dt
(ln(uφt ))|t=0 = δ(X).

On the other hand,

d

dt
(ln(λ ◦ φ̃t )− ln(λ)) = d

dt

(∫ t

0
φ̃∗
s (i(φ̃

·∗
s )(d ln λ)) ds

)
= φ̃∗

t i(φ̃·
t )π

∗ω = φ̃∗
t π

∗i(π∗φ̃·
t )ω = π∗(φ∗

t i(φ·
t )ω).

This expression evaluated at t = 0 gives ω(X) ◦ π . We thus have proved that

d

dt
(ln(bφt ))|t=0 = (ω(X)+ δ(X)) ◦ π = l(X).

Hence, L′ = ln ◦ L is an integral of l.
If φ̃ = φ̃1 is the end of the isotopy φ̃t , lifting φt , with φ̃0 = id, then

ln

(
λ ◦ φ̃
λ

)
= ln(λ ◦ φ̃)− ln λ =

∫ 1

0
φ̃∗
s (i(φ̃

·
s)(d ln λ) ds) =

∫ 1

0
φ̃∗
s (i(φ̃

·
s)(π

∗ω) ds)

=
∫ 1

0
π∗φ∗

s (i(φ̃
·
s)(ω) ds) =

(∫ 1

0
φ∗
s (i(φ̃

·
s)(ω) ds)

)
◦ π = u ◦ π.

This proves formula (7) in Section 2. The proof of Theorem 2 is now complete.

Remarks. Both formulas given in [10] and the formula given here contain the expression

Dφ−1 = ln(fφ).

It has been proved in [2] (see also [4]) that the correspondence

φ �→ Dφ−1
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is a 1-cocycle on DiffS(M)0 with values in the space C∞(M) of smooth functions on
M , whose cohomology class in H 1(DiffS(M)0, C

∞(M)) is an invariant of the conformal
structure S.

We see here that the global extended Lee homomorphism, which is a conformal invariant
as well, is the sum of this invariant and another piece, which is not a conformal invariant.

4.1. The Calabi homomorphism

Proposition 3 suggests the following proposition.

Proposition 5. The mapping

[φ] �→
∫ 1

0
λπ∗(φ∗

t i(φ·
t )Ω) dt

is a well-defined surjective homomorphism on the universal cover K̃erL of KerL

S̃ : K̃erL→ H 1
cA(M̃).

Remarks.

1. In Theorem 2, to define a lifting φ̃ of φ ∈ DiffS(M), we do not need an isotopy φt

from id to φ in DiffS(M). Any homotopy in the group of homeomorphism just does the
job, unlike in [10]. Hence, our construction is valid for a group larger than the identity
component DiffS(M)0.

2. A fragmentation lemma for elements in Ker S̃ can also be proved.

5. Applications to mechanics

5.1. Twisted Hamiltonians [14]

Symplectic geometry is the natural setting for classical mechanics. Given a function H
on a symplectic manifold (M,Ω), we use the symplectic form Ω to define the Hamiltonian
vector field XH : the unique vector field XH such that Ω(XH , ξ) = dH(ξ) for any vector
field ξ . Hamilton equations then take the form

d

dt
γt = XH(γt ).

If we only have an LCS pair (Ω,ω) on M , we still can define Hamiltonian vector fields:
just take functions Hi defined on each open set Ui of an open cover as above which satisfy
the transition rule: Hi = cijHj on Ui ∩ Uj , and define local Hamiltonian vector fields
XHi

in each open set by Ω ′
i (XHi

, ξ) = dHi(ξ). Here Ωj = Ω|Uj
and Ω ′

j = λjΩj , and



A. Banyaga / Journal of Geometry and Physics 39 (2001) 30–44 43

Ω ′
i = cijΩ

′
j (see notations in Section 3). In Ui ∩ Uj , we have Ω ′

i (XHi
, ·) = dHi , which

rewrite as

cijΩ
′
j (XHi

, ·) = Ω ′
i (XHi

, ·) = dHi = d(cijHj) = cij dHj = cijΩ
′
j (XHj

, ·).
Simplifying by the non-zero constant cij, we get Ω ′

j (XHi
, ·) = Ω ′

j (XHj
, ·). This says that

XHi
andXHj

agree on the intersectionUi∩Uj . Hence, we have Hamilton equations defined
globally, and automorphisms of the Γ -structure defined by the LCS structure, i.e. locally
conformal diffeomorphisms respect the local Hamilton equations, and hence the global one.

Therefore, LCS geometry is a more general setting for Hamiltonian mechanics than
symplectic geometry. The set (Hi) of functions satisfying the condition Hi = cijHj are
sections of some line bundle overM , and are called “twisted” Hamiltonians. This motivation
of LCS geometry was given by Vaisman [14].

5.2. Mechanics on the regular cover

We are now going to formulate Hamilton equations on the regular cover M̃ associated
with the Lee form on an LCS manifold M . Let H be a smooth function on M . Consider the
unique vector field XH on M defined by the following equation:

i(XH )Ω = dH +Hω.

A short calculation shows that

LXH
Ω = (−i(XH )ω)Ω,

i.e. XH is an automorphism of the locally conformal structure, which is in the kernel of the
extended Lee homomorphism l. Therefore, any lift YH of XH is a symplectic vector field
of (M̃,Ω ′). Note that

i(YH )Ω
′ = λπ∗(i(XH )Ω) = λπ∗(dH +Hω) = (dH ′)λ+H ′λ d ln λ = d(λH ′),

whereH ′ = H ◦π . Hence YH is the Hamiltonian vector field on (M̃,Ω ′), with Hamiltonian
λH ′. The Hamilton equations on (M̃,Ω ′) can then be written as

d

dt
γt = YH (γt )

on (M̃,Ω ′).
For f, g ∈ C∞(M), the function (Ω ′(Yf , Yg))/λ is a basic function which is equal to

the Jacobi bracket defined below. This globalizes a formula of Guerida and Lichnerowicz
[9].

If (Ω,ω) is an LCS pair on a smooth manifold M , then Ω̃ : T (M) → T ∗(M), X �→
i(X)Ω is an isomorphism.

Like in the symplectic case, we get a non-degenerate skew symmetric tensor field P

corresponding to P̃ = Ω̃−1 : T ∗(M) → T (M). The condition dΩ = −ω ∧ Ω translates
as

[[P,P ]] = 2E ∧ P and [[E,P ]] = 0,
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where E = P(ω). Here [[·]] is the Schouten-Nijenhuis bracket, defined on Λp(TM) as
follows: [[X, Y ]] = [X, Y ] the Lie bracket if X, Y are vector fields. If X is a vector field
and Y = Y1 ∧Y2 ∧ · · · ∧Yk , then [[X, Y ]] = ∑

(−1)jY1 ∧ · · · ∧ [X, Yj ] ∧Yj+1 ∧ · · · ∧Yk .
It is then extended bilinearly.

A couple (E, P ) satisfying the identities as above is called a Jacobi structure. Therefore,
an LCS structure gives raise to a Jacobi structure (P,E) on M [9]. The (Jacobi) bracket
{f, g} of two functions on M is the function

{f, g} = P(df ) · g + f dg(E)− g df (E).

With the Jacobi bracket, the spaceC∞(M) of smooth functions onM becomes a Lie algebra.
We have

{f, g} = Ω ′(Yf , Yg)
λ

.

The local version of this formula can be found in [9], where it is proved that LCS manifolds
are the same thing as even-dimensional transitive Jacobi manifolds.

For more comments on the connection between other structures underlying mechanics,
see [5].
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